All Math

Selasa, 01 Oktober 2013

Sejarah Matematika

1.    Filsafat Matematika
Filsafat matematika adalah cabang dari
filsafat yang mengkaji anggapan-anggapan filsafat, dasar-dasar, dan dampak-dampak matematika. Tujuan dari filsafat matematika adalah untuk memberikan rekaman sifat dan metodologi matematika dan untukmemahami kedudukan matematika di dalam kehidupan manusia. Sifat logis danterstruktur dari matematika itu sendiri membuat pengkajian ini meluas dan unikdi antara mitra-mitra bahasan filsafat lainnya.


Tema-tema yang sering diperbincangkan di antaranya:
  • Apakah sumber pokok bahasan matematika?
  • Apakah status ontologis dari entitas-entitas matematika?
  • Apakah yang dimaksud dengan objek matematika?
  • Apakah sifat/karakter dari proposisi matematika?
  • Apakah kaitan antara logika dan matematika?
  • Apakah peran hermeneutika di dalam matematika?
  • Jenis penyelidikan apakah yang memainkan peran penting di dalam matematika?
  • Apakah tujuan dari penyelidikan matematika?
  • Apakah yang memberi pertautan antara matematika dan pengalaman?
  • Sifat manusia apakah yang berada di sebalik matematika?
  • Apakah yang dimaksud dengan keindahan matematika?
  • Apakah sumber dan sifat kebenaran matematika?
  • Apakah hubungan antara dunia matematika abstrak dan semesta materi?
  • Apakah matematika suatu bahasa yang mutlak dan universal?
Filsafat matematika mempunyai tujuan untuk menjelaskan dan menjawab tentang kedudukandan dasar dari obyek dan metode matematika yaitu menjelaskan apakah secaraontologism obyek matematika itu ada, dan menjelaskan secara epistemologisapakah semua pernyataan matematika mempunyai tujuan dan menentukan suatukebenaran. Mengingat bahwa hukum-hukum alam dan hukum-hukum matematikamempunyai kesamaan status, maka obyek-obyek pada dunia nyata mungkin dapatmenjadi pondasi matematika. Tetapi ini masih menjadi pertanyaan besar untukdijawab.

 Walaupun beberapa pemikir pada filsafat modern dari matematika menolak bagi keberadaan pondasi di dalam matematika, namunbebarapa filsuf masih tetap menaruh perhatian kepada kegiatan kognisi manusiasebagai basis bagi diletakkannya fondamen matematika. Mereka mencoba meletakkandasar matematika pada kegiatan kognisi manusia, seperti yang dilakukan ImmanuelKant, bukan pada obyek di luar matematika.

Filsuf matematikayang dikenalkan di sini adalah Pythagoras, Plato, Aristoteles, Leibniz, danKant. Doktrin Pythagoras antara lain bahwa fenomena yang tampak berbeda dapatmemiliki representasi matematis yang identik (cahaya, magnet, listrik – sebagaigetaran – dapat memiliki persamaan diferensial yang sama). Aristotelesmenekankan, menemukan ‘dunia permanen’ merupakan realita daripada ‘apa yangtampak’. Aristoteles lebih menekankan pada ‘absraksi’ daripada ‘apa yangtampak’. Leibniz dan Kant menekankan pada proposisi matematis.

2.   Sejarah Matematika
Matematika adalahalat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan,industri, sains). Sejarah matematika adalah penyelidikan terhadap asalmula penemuan di dalam
matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangunperadaban manusia sepanjang masa.

Metode yangdigunakan adalah eksperimen atau penalaran induktif dan penalaran deduktif.Penalaran induktif adalah penarikan kesimpulan setelah melihat kasus-kasus yangkhusus. Kesimpulan penalaran induktif memiliki derajat kebenaran barangkalibenar atau tidak perlu benar.

Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis daripengembangan matematika telah mengalami kemilau hanya di beberapa tempat.Tulisan matematika terkuno yang telah ditemukan adalah
Plimpton322 (matematikaBabilonia sekitar 1900 SM), Lembaran Matematika Rhind (MatematikaMesir sekitar 2000-1800 SM) dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM).    Semua tulisan itu membahas teorema yang umumdikenal sebagai teorema Pythagoras,yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luassetelah aritmetika dasar dan geometri.

Sumbangan
matematikawanYunani memurnikan metode-metode (khususnya melalui pengenalanpenalaran deduktif dan kekakuan matematikadi dalam pembuktian matematika) dan perluasan pokok bahasan matematika. Kata"matematika" itu sendiri diturunkan dari kata Yunani kuno, μάθημα(mathema), yang berarti "mata pelajaran". MatematikaCina membuat sumbangan dini, termasuk notasiposisional. Sistem bilangan Hindu-Arab dan aturanpenggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melaluikuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam. Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuanmatematika ke peradaban ini. Banyak naskah berbahasa Yunani dan Arab tentangmatematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah padapengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.

Dari zaman kuno melalui ZamanPertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abadkemandekan. Bermula pada
abad Renaisans Italia pada abad ke-16, pengembanganmatematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

A.   Secara Geografis
1. Mesopotamia
- Menentukan system bilangan pertama kali
- Menemukan system berat dan ukur 
- Tahun 2500 SM system desimal tidak lagi digunakan dan lidi diganti oleh notasi berbentukbaji

2. Babilonia
- Menggunakan sitem desimal dan π=3,125
- Penemu kalkulator pertama kali
- Mengenal geometri sebagai basis perhitungan astronomi
- Menggunakan pendekatan untuk akar kuadrat
- Geometrinya bersifat aljabaris
- Aritmatika tumbuh dan berkembang baik menjadi aljabar retoris yang berkembang
- Sudah mengenal teorema Pythagoras

3. Mesir Kuno
- Sudah mengenal rumus untuk menghitung luas dan isi
- Mengenal system bilangan dan symbol pada tahun 3100 SM
- Mengenal tripel Pythagoras
- Sitem angka bercorak aditif dan aritmatika
- Tahun 300 SM menggunakan system bilangan berbasis 10

4. Yunani Kuno
- Pythagoras membuktikan teorema Pythagoras secara matematis (terbaik)
- Pencetus awal konsep[ nol adalah Al Khwarizmi
- Archimedes mencetuskan nama parabola, yang artinya bagian sudut kanan kerucut
- Hipassus penemu bilangan irrasional
- Diophantus penemu aritmatika (pembahasan teori-teori bilangan yang isinyamerupakan pengembangan aljabar yang dilakukan dengan membuat sebuah persamaan)
- Archimedes membuat geometri bidang datar
- Mengenal bilangan prima

5. India
- Brahmagyupta lahir pada 598-660 Ad
- Aryabtha (4018 SM) menemukan hubungan keliling sebuah lingkaran
- Memperkenalkan pemakaian nol dan desimal
- Brahmagyupta menemukan bilangan negatif
- Rumus a2+b2+c2 telah ada pada “Sulbasutra”
- Geometrinya sudah mengenal tripel Pythagoras,teorema Pythagoras,transformasidan segitiga pascal

     6. China
- Mengenal sifat-sifat segitiga siku-siku tahun 3000 SM
- Mengembangkan angka negatif, bilangan desimal, system desimal, system biner,aljabar, geometri, trigonometri dan kalkulus
- Telah menemukan metode untuk memecahkan beberapa jenis persamaan yaitupersamaan kuadrat, kubikdan qualitik
- Aljabarnya menggunakan system horner untuk menyelesaikan persamaan kuadrat

B.   Berdasarkan Tokoh

1. Thales (624-550 SM)
Dapat disebut matematikawan pertama yang merumuskan teorema atau proposisi,dimana tradisi ini menjadi lebih jelas setelah dijabarkan oleh Euclid. Landasan matematika sebagai ilmuterapan rupanya sudah diletakan oleh Thales sebelum muncul Pythagoras yangmembuat bilangan.

2. Pythagoras (582-496 SM)
Pythagoras adalah orang yang pertama kali mencetuskan aksioma-aksioma,postulat-postulat yang perlu dijabarkan ter lebih dahulu dalam mengembangkangeometri. Pythagoras bukan orang yang menemukan suatu teorema Pythagoras namundia berhasil membuat pembuktian matematis. 2 sebagai bilangan irrasional.ÖPersaudaraanPythagoras menemukan

3. Socrates (427-347 SM)
Ia merupakan seorang filosofi besar dari Yunani. Dia juga menjadi pencipta ajaranserba cita, karena itu filosofinya dinamakan idealisme. Ajarannya lahir karenapergaulannya dengan kaum sofis. Plato merupakan ahli piker pertama yangmenerima paham adanya alam bukan benda.

4. Ecluides (325-265 SM)
Euklides disebut sebagai “Bapak Geometri” karena menemuka teori bilangan dangeometri. Subyek-subyek yang dibahas adalah bentuk-bentuk, teorema Pythagoras,persamaan dalam aljabar, lingkaran, tangen,geometri ruang, teori proporsi danlain-lain. Alat-alat temuan Eukluides antara lain mistar dan jangka.

5. Archimedes (287-212 SM)
Dia mengaplikasikan prinsip fisika dan matematika. Dan juga menemukanperhitungan π (pi) dalam menghitung luas lingkaran. Ia adalah ahli matematikaterbesar sepanjang zaman dan di zaman kuno. Tiga kaaarya Archimedes membahasgeometri bidang datar, yaitu pengukuran lingkaran, kuadratur dari parabola danspiral.

6. Appolonius (262-190 SM)
Konsepnya mengenai parabola, hiperbola, dan elips banyak memberi sumbangan bagiastronomi modern. Ia merupakan seorang matematikawan tang ahli dalam geometri.Teorema Appolonius menghubungkan beberapa unsur dalam segitiga.

 7. Diophantus (250-200 SM)
Ia merupakan “Bapak Aljabar” bagi Babilonia yang mengembangkan konsep-konsepaljabar Babilonia. Seorang matematikawan Yunani yang bermukim di Iskandaria.Karya besar Diophantus berupa buku aritmatika, buku karangan pertama tentangsystem aljabar. Bagian yang terpelihara dari aritmatika Diophantus berisipemecahan kira-kira 130 soal yang menghasilkan persamaan-persamaan tingkatpertama.

4
4. Periode Matematika

Ada dua macam pembagian mengikuti waktu atauperiode perkembangan. Yang pertama, pembagian waktu ke dalam tiga periode,yakni, “dahulu”, “pertengahan”, dan “sekarang”. Pembagian ini berdasarkanpertumbuhan matematika sendiri dan daya tahan hidup sesuai zamannya. Yangkedua, pembagian menurut cara konvensional dalam tujuh skala waktu menurutpenemuan naskah yang dapat dihimpun, yakni (1) Babilonia dan Mesir Kuno, (2)Kejayaan Yunani (600 SM – 300), (3) Masyarakat Timur dekat (sebagian sebelumdan sebagian lagi sesudah (2)), (4) Eropa dan masa Renaissance, (5) Abad ke-17,(6) Abad ke-18 dan 19, dan (7) Abad ke-20. Pembagian ini mengikuti perkembangankebudayaan Eropa.

Setiap periode, baik yang membagimenjadi 3 atau pun 7, memiliki ciri khas yang umum. Pada periode “dahulu”, cirikhasnya adalah empiris, mendasarkan pada pengalaman (indera) hidup manusia.Periode “pertengahan” mulai dengan analisis (Descartes, Newton, Leibniz, Galileo), sedangkan padaperiode “sekarang” ciri khasnya adalah metode abstraksi dan generalisasi.Ternyata perkembangan matematika dilihat dari kualitas dan kekuatannya jauhlebih penting daripada dilihat secara kuantitas. Ingatlah akan definisimatematika yang mengatakan “matematika adalah cara berpikir dan bernalar”,lihat Modul 1. Sedang kekuatannya, misalnya, lihatlah geometri Euclid dibandingdengan geometri non-euclid, yang terakhir ini mampu menyelesaikan masalah lebihrumit (geometri non-euclid digunakan dalam mengembangkan teori relativitasdalam ilmu fisika)

Perkembangan Matematika Sesudah Renaissance
            Masing-masing dari 7 periodeterdapat peningkatan kematangan yang signifikan, namun juga terdapatketerbatasannya. Pada periode Yunani, matematika masih bersifat empiris. Padaabad ke-17, kekurangan itu diperbaiki dengan munculnya geometri analitik,proyektif, dan diferensial pada abad berikutnya. Revitalisasi diperlukan agarpertumbuhan matematika makin berkembang dan dapat digunakan dalam ilmu lainnya.Yang terakhir muncul geometri baru (non-euclid) dan menyingkirkan geometrieuclid (lama).

Dalam periode terakhir, daerahjelajah matematika makin luas. Beberapa cabang menjadi terlepas dari induknyadan menjadi otonom. Beberapa di antaranya diserap dalam wadah yang lebih besar,misalnya analisis telah menggeneralisasi geometri. Pelarian dan penangkapankembali ini mengilhami para matematikawan untuk merangkum kembali seluruhmatematika. Awal abad ke-20 dipercayai unifikasi akan dicapai melalui logikamatematis (Bertrand Russell). Ternyata harapan ini sia-sia dan terlepas.

Matematika dan filsafat mempunyai sejarah keterikatan satu dengan yang lain sejak jaman YunaniKuno. Matematika di samping merupakan sumber dan inspirasi bagi para filsuf,metodenya juga banyak diadopsi untuk mendeskripsikan pemikiran filsafat. Kitabahkan mengenal beberapa matematikawan yang sekaligus sebagai sorang filsuf,misalnya Descartes, Leibniz, Bolzano, Dedekind, Frege, Brouwer, Hilbert,G¨odel, and Weyl. Pada abad terakhir di mana logika yang merupakan kajian sekaligu spondasi matematika menjadi bahan kajian penting baik oleh para matematikawanmaupun oleh para filsuf. Logika matematika mempunyai peranan hingga sampai erafilsafat kontemporer di mana banyak para filsuf kemudian mempelajari logika.Logika matematika telah memberi inspirasi kepada pemikiran filsuf, kemudianpara filsuf juga berusaha mengembangkan pemikiran logika misalnya “logikamodal”, yang kemudian dikembangkan lagi oleh para matematikawan dan bermanfaatbagi pengembangan program komputer dan analisis bahasa. Salah satu titikkrusial yang menjadi masalah bersama oleh matematika maupun filsafat misalnyapersoalan pondasi matematika

Tidak ada komentar:

Posting Komentar